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bstract

A risk-based sensor placement methodology is proposed to solve the problem of optimal location of sensors to protect population against the
xposure to, and effects of, known and/or postulated chemical, biological, and/or radiological threats. Risk is calculated as a quantitative value
epresenting population at risk from exposure at standard exposure levels.

Historical meteorological data are used to characterize weather conditions as the frequency of wind speed and direction pairs. The meteorological
ata drive atmospheric transport and dispersion modeling of the threats, the results of which are used to calculate risk values. Sensor locations
re determined via an iterative dynamic programming algorithm whereby threats detected by sensors placed in prior iterations are removed from
onsideration in subsequent iterations.
In addition to the risk-based placement algorithm, the proposed methodology provides a quantification of the marginal utility of each additional
ensor. This is the fraction of the total risk accounted for by placement of the sensor. Thus, the criteria for halting the iterative process can be the
umber of sensors available, a threshold marginal utility value, and/or a minimum cumulative utility achieved with all sensors.

2008 Elsevier B.V. All rights reserved.
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. Introduction

The placement of sensors at storage facilities and other loca-
ions with known threats is a critical aspect of any strategy to
rotect population potentially exposed to those threats. However,
he prohibitive costs associated with purchasing, deploying, and

aintaining a large number of sensors in a network make it
mpractical to place sensors everywhere. We propose a sen-
or placement methodology that optimizes sensor locations
o protect population against the exposure to, and effects of,
nown and/or postulated chemical, biological, and/or radiolog-
cal threats. Our motivation is two-fold. First, sensor placement
echniques for detection of chemical and/or biological agents

ave yet to be standardized or universally adopted. Second, in
rder to determine population effects, a sensor placement strat-
gy must account for the transport and dispersion of hazardous

� This work is funded under U.S. Department of Energy proposal number
RD-04-2465 for the Memphis and Shelby County Port Commission at Oak
idge National Laboratory which is managed by UT-Battelle, LLC for the U.S.
epartment of Energy under Contract No. DE-AC0500OR22725.
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aterials, the population distribution, and the toxicity of mate-
ials. Existing sensor placement algorithms and methods do not
ccount for all of these factors.

Current optimization approaches to sensor placement include
euristics, genetic algorithms, dynamic programming, and diffu-
ion boundary methods [1–3]. Placement optimization objective
unctions vary for different types of sensors. For example, visual
r geometric coverage is typically the objective function to be
aximized for placement of surveillance cameras [4–7]. For

oint or area detections the objective is to maximize coverage
f a geographic or geometric area [8,9]. Other approaches to
lume detection focus on criteria such as time to detection or
otal sensor area coverage and are concerned only with detecting
ny part of a plume [1,3].

However, mere detection of a chemical or biological agent
s insufficient to fully characterize the threat posed by the cor-
esponding release. We suggest that effects on population of
ndetected releases of hazardous materials represent the risk
osed by the hazards, and this risk should be the primary con-

ideration when placing sensors.

In order to account for population effects, a sensor placement
ethod must consider the variety of meteorological conditions

nder which a threat might occur in a manner that is independent

mailto:leerw@ornl.gov
dx.doi.org/10.1016/j.jhazmat.2008.01.111
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f the time of occurrence. Other methods assume a particular
ind condition [1] and/or solve the sensor placement problem

or a particular instant of time. This is useful if sensors can be
elocated quickly with each meteorological change. It is more
ommon that sensors cannot be moved easily, and thus a solution
ccounting for all meteorological conditions is needed.

The proposed algorithm and methodology places sensors for
ituations in which threats, defined as releases of hazardous
aterial, are known or can be postulated. Sensors are placed

o detect the releases whenever they might occur, thereby pro-
ecting potentially affected population. The key elements of the
roposed approach are:

risk, defined as population exposure and effects, is the basis
of the objective function to be minimized;
a wind rose specifying probabilities for wind (direction,
speed) pairs is derived from historical meteorological data
and used to represent wind conditions at a site;
the transport and dispersion, as well as population exposure
effects, are computed for each threat at each wind (direction,
speed) pair; and
sensor locations are determined via an iterative dynamic
programming algorithm, where each iteration optimizes the
location of the next sensor.

The proposed methodology offers: a defensible and reason-
ble foundation for a systematic, risk-based placement of sensors
or known threats; and a quantifiable mechanism for determin-
ng the marginal utility of each additional sensor. Moreover, the
roposed methodology is generally applicable and is not depen-
ent on locations, types of threats, sources of data, or specific
odels.
Sensors are assumed to be perfect detectors, so that any

mount of an agent or material passing through a sensor will be
etected. Thus, the methodology does not account for a sensor’s
esponse to the concentration or mass of the material required for
etection. There are two justifications for this assumption. First,
he nature of the problem to be solved, namely toxic agents in
ufficient quantities to pose a risk to population, implies material
asses above any reasonable detection threshold for a sensor.
he sensors used in the reference application of the methodol-
gy respond to quantities in the nanogram range, respond within
few seconds, and are quickly saturated. Second, the problem

o be solved is the location for sensors in general, irrespective
f the particular sensing technology deployed.

The remainder of the paper is organized as follows. We
tart with a description of the background and concepts upon
hich the methodology is built in Section 2. Next, Section 3
escribes the inputs, parameters, and calculations required to
tart the placement process. Section 4 presents the risk-based
ptimization function, and the placement algorithm is explained
n Section 5. Steps in the proposed methodology are summarized

n Section 6, and results from applying the methodology at the
ort of Memphis are presented in Section 7. Comparison with
ther approaches and concluding comments are given in Section
.

a
o
e

ous Materials 158 (2008) 417–429

. Background and concepts

Managers at the Port of Memphis sought to place a cost-
imited number of sensors in locations that would provide the
reatest protection from airborne releases to the population in the
rea. Warning of a release would allow them to take appropriate
easures for potentially affected people. Hazardous chemicals

tored at three separate locations were the threats to be addressed.
ased on these minimal criteria, a methodology was developed

o select sensor locations in deployment order, such that the
irborne releases that are intercepted represent the highest reduc-
ion in exposure risk to the population. Air dispersion analyses
ere based on site-specific release quantities and locations and
0 years of hourly wind direction and speed observations at
emphis International Airport.
The first step was to identify the hazardous materials, quan-

ities, and locations. A threat weighting factor was assigned to
ach release to represent its likelihood. (A value of one for all
eleases means they are equally likely.) A wind rose was cal-
ulated using historical data. Then, the transport and dispersion
f each release was computed for each wind (direction, speed)
air in the rose. The dosage field resulting from each transport
omputation was contoured by dosage values corresponding to
tandard (qualitative) exposure levels, and the number of peo-
le contained within each exposure level was calculated. Each
xposure level was assigned a factor representing the severity
f the exposure. For each exposure level contour, a risk value
as calculated as the product of the threat factor, the exposure

evel factor, the probability of occurrence of the associated wind
direction, speed) pair, and the count of the population for the
ontour.

The final step before choosing the location of the first sen-
or was to computationally overlay all contours over a suitable
wo-dimensional grid to represent the plane at the location of
nterest. The geographic center of each grid cell was assigned as
ts reference point. Each cell was checked against each exposure
evel contour to determine if the cell reference point lies within
he contour geographically. If so, the contour’s risk value was
dded to the risk value associated with the cell. The first sensor
as assigned to the cell with the highest risk value. If restrictions

t the site prevented placing a sensor in the chosen grid cell, the
ell with the next highest risk value was selected until a cell was
ound where a sensor could be placed.

The location of the second sensor was determined in a similar
ashion, except that all contours that were used in calculating the
isk value for the cell where the first sensor was assigned were
emoved from the calculations. Subsequent sensors were placed
y following the same process described above, excluding con-
ours used in previous sensor placement cells. The process was
erminated when all available sensors were placed.

. Inputs and parameters
The proposed sensor placement methodology is built around
dynamic programming algorithm where each iteration is an

ptimization solution for the next sensor location. Data gath-
ring and computations preparing the inputs for the placement
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percentage of occurrence. However, the NWS station(s) chosen
to produce the rose must be close enough to (and representa-
R.W. Lee, J.J. Kulesz / Journal of H

lgorithm are essential to understanding and implementing the
ethodology. The inputs and parameters of the risk-based sen-

or placement methodology are threat characteristics, exposure
evels, a site-specific wind rose, population data, transport and
ispersion computations, and a suitable sensor placement grid.

.1. Threats

We begin with a set of known or postulated threats to detect.
ach identified threat is modeled as an agent release for input

o an atmospheric transport and dispersion model. The nature of
he threat dictates the release definition. For example, a puncture
n a storage tank might be modeled as a series of instantaneous
eleases at decreasing masses. Complete failure of a container
olding liquid under pressure might be represented as an instan-
aneous gaseous release and a pooled liquid release. For the Port
f Memphis, threats were derived from an Environment Protec-
ion Agency (EPA) study and modeled as continuous releases
f specific materials at specific release rates using the Hazard
rediction and Assessment Capability (HPAC) [10].

Regardless of the choice of dispersion model, the threat must
e defined as accurately as the chosen model allows and should
ccount for the material mass as well. Realistic release rates must
e established for releases from containers, where the dynamics
f phase changes that occur as the material is expelled from a
ontainer are applied.

.1.1. Threat factor
In many cases, each threat may be considered equally likely

nd/or of equal concern. If not, a weighting factor may be
ssigned to each threat to represent its likelihood of occur-
ence or importance relative to other threats. This is a means
f quantifying threat reduction measures, such as administra-
ive and/or engineering controls. The factor is applied in the risk
alue calculation described in Section 4.1.

.2. Exposure levels

Dispersion models typically produce concentration, deposi-
ion, and/or dosage fields. However, these results do not relate
irectly to effects on population, and correlation of the fields to
ffects is necessary.

For this methodology, a model must produce a dosage field.
he dosage field is contoured by material-specific dosage val-
es associated with standard exposure limits and levels. These
tandards are defined by organizations such as the American
ndustrial Hygiene Association (AIHA), the National Research
ouncil’s Committee on Toxicology (NRC COT), and the
epartment of Energy (DOE). AIHA publishes the Emergency
esponse Planning Guidelines (ERPG). NRC COT publishes
cute Exposure Guideline Levels (AEGL), Emergency Expo-

ure Guideline Levels (EEGLs) for the Department of Defense,

nd Short-Term Public Exposure Guidance Levels (SPEGL)
11]. Temporary Emergency Exposure Limits (TEELs) are
efined by DOE and used when AEGLs and ERPGs are unavail-
ble [11].

t
M
p
t

ous Materials 158 (2008) 417–429 419

Dosages corresponding to the standard exposure levels vary
y material or agent. HPAC material descriptions include expo-
ure level dosage values used for contouring the dosage field.

.2.1. Exposure level factor
These exposure levels are qualitative in nature and there-

ore must be quantified to contribute a term to an objective
unction. Thus, we associate a quantitative factor with each qual-
tative exposure level, where baseline levels such as TEEL-0
nd ERPG-0 are given a factor of 1.0. Higher exposure levels,
Ct90 (90% lethality) being the highest, are given higher fac-

ors applied to the risk value term. For example, in application of
he methodology at the Port of Memphis, LCt90 was assigned a
alue of 5.0, meaning one person exposed at LCt90 is equivalent
o five persons exposed at TEEL-0. The exposure level factor is
pplied in the risk value calculation described in Section 4.1.

.3. Wind rose

To fully account for the range of meteorological conditions
ccurring over time at a location is impractical. However, wind
onditions are a useful subset for the purposes of the proposed
ensor placement methodology. A common representation of
he range of wind conditions at a location is a wind rose. “A
ind rose gives a very succinct but information-laden view of
ow wind speed and direction are typically distributed at a par-
icular location” [12]. Specifically, it specifies wind direction
nd speed pairs and their percentage of occurrence. The Natu-
al Resources Conservation Service (NRCS) uses data from the
olar and Meteorological Surface Observation Network (SAM-
ON) to produce wind roses. Refer to Fig. 1 for an example
rom the NRCS Web site. SAMSON consists of hourly observa-
ions from 1961 through 1990 at 237 National Weather Service
NWS) stations in the United States, Guam, and Puerto Rico.
hus, SAMSON is a good data source for computing wind roses
t the stations covered, although any source of data can be used.

.3.1. Direction and speed bins
Direction and speed bins in the rose must be chosen to be

ufficiently small to account for variations in the observation
alues. The NRCS chooses 16 directions and six speeds, the 16
irections yielding a bin size of 22.5◦. For the Port of Memphis,
he six speed bins were sized at two m/s with centroid values
ne, three, five, seven, nine, and 11. Speeds above the high bin
oundary are assigned to the highest bin.

.3.2. Station locations
A single rose derived from 30 years of data provides a needed

uccinct representation of wind speed and direction in terms of
ive of) locations of interest to be applicable. SAMSON data for
emphis International Airport were used for the Port of Mem-

his. Note the airport is approximately eight miles away, and
here is no intervening terrain of consequence.
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.4. Population data
A geographic population distribution is necessary to count the
opulation affected by a hazardous release. As described above,
ispersion model dosage fields for each threat are contoured by
tandard exposure levels, and the population within the contours

b
u
r

ind rose.

s counted. LandScan 2003 data at 30 arc-second resolution were
sed for sensor placement at the Port of Memphis [13].
It should be noted that a population distribution that varies
y time of day, most simply day versus night, is particularly
seful. The population count within a contour is applied in the
isk value calculation described in Section 4.1.
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placement, well over 3100 individual contours were generated.

Each contour consists of one or more polygons, and each
polygon is defined as an outer ring and zero or more inte-
rior or hole rings. Fig. 2 shows three representative contours.
Fig. 2. Example contours resu

.5. Transport and dispersion computation

As mentioned above, each identified threat is modeled as
n agent or material release to be fed to a dispersion model.
he dispersion model should account for material charac-

eristics such as evaporation rates and buoyancy as well as
eather and environmental conditions during the dispersion
rocess.

Many dispersion models are available, such as the Hybrid
ingle-Particle Lagrangian Integrated Trajectory Model (HYS-
LIT) [14], the Areal Locations of Hazardous Atmosphere
ALOHA) [15], Vapor Liquid Solid Tracking (VLSTRACK),
nd many others [16]. Any system able to competently model the
dentified threats can be used. Our implementation of the pro-
osed methodology uses the Second-order Closure Integrated
uff Model (SCIPUFF) [17,18], the transport and dispersion
ngine in the Hazard Prediction and Assessment Capability
HPAC) [10]. In addition to the Defense Threat Reduction
gency’s (DTRA) standardization of HPAC for hazard analysis,

easons for choosing HPAC include:

built-in modules for contouring calculated dosage fields;
an extensive material library with dosage values correspond-
ing to the standard exposure levels identified above;
built-in calculation of population using LandScan 2003 data
[13]; and
a validated transport and dispersion model accounting for
meteorology, terrain, land cover, and other environmental
conditions.

.5.1. Computing threat effects

For each threat, the dispersion must be computed for each

direction, speed) bin in the wind rose. Thus, a rose with
6 directions and six speeds requires 96 dispersion computa-
ions for each threat. Each dispersion computation results in a e
from dispersion computation.

osage field, from which exposure level contours are derived as
escribed in Section 3.2.

With HPAC, contour calculations are provided in the disper-
ion engine library, and the population contained within each
ontour is counted against the 30 arc-second night time Land-
can 2003 distribution [19]. For each exposure level, one or
ore contour polygons result. Once the computations are com-

lete there is a set of exposure level contours for each threat and
or each wind rose bin.

The duration for the model computation is specified in the
hreat definition and must be long enough to account for the full
ffects of a release on population. HPAC defaults the duration to
h, but 2 h was sufficient for the threats at the Port of Memphis.

.5.2. Exposure level contours
Exposure standards specify multiple levels representing a

ange of toxicity, and a dosage value for each level is associated
ith the material released. Thus, contouring the dosage field

resulting from dispersion computation for a particular threat
nd wind condition) results in a contour for each exposure level.

For example, sensor placement at the Port of Memphis was
ased on nine threats and a wind rose of 96 bins. Materials
or the nine threats are such that six have three defined expo-
ure levels and three have seven defined exposure levels. Thus,
here are potentially 39 contours for each of the 96 meteorolog-
cal conditions for a total of 3744, although dosages for higher
xposure levels are not always reached. For the Port of Memphis

1

1 All dosage contour values are taken from HPAC material files which refer-
nce DOE document DKC-04-003.
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ontours themselves provide primary input to the placement
ptimization’s objective function described in Section 4.

.6. Placement grid

The proposed methodology assumes point-detector sensors
ill be deployed on a two-dimensional grid covering the spa-

ial domain of potential locations. The height at which sensors
re deployed is chosen to: ensure their detection of any release
f sufficient magnitude to threaten nearby population; and to
ccount for other placement constraints, such as protection from
ampering and accessibility for scheduled maintenance. Since
he sensor height is fixed, the methodology selects placement in
wo dimensions.

Although a rectilinear grid is a natural fit for two dimen-
ions, cells in the grid can be of any shape or size. However, all
pace within a cell is treated equally, meaning a sensor may be
laced anywhere within the cell and achieve the same result. One
ocation within each cell is chosen as the reference point, repre-
entative of all the space covered by that cell. Note the grid must
e granular enough such that cell reference points will account
or threat effects, as described in Section 4.2.

A uniform rectangular grid composed of roughly 27
× 30 m cells was used at the Port of Memphis. This adequately

epresents the range of space in which discrete sensor locations
re possible. Each cell’s center is chosen as its reference point.
nvironmental constraints such as power and network availabil-

ty might eliminate some grid cells as possible sensor locations,
s was the case in Memphis.

. Risk-based objective function

The key concept behind the sensor placement optimization
s risk. Each threat’s dispersion is computed for each (direction,
peed) pair in the wind rose, and each dispersion computation
esults in a set of contours representing exposure levels appropri-
te for the agent/material released. For each contour we calculate
risk value in order to quantify the effects on population of the

xposure represented by the contour. The cumulative risk across
ll contours for all threats and wind conditions is the total risk,
nd the objective is to detect or account for as much of the total
isk as possible.

.1. Risk value calculation

The risk associated with an exposure contour depends on
any factors. It is convenient to parameterize risk value calcu-

ation in the form

=
∑
c ∈ C

R(c) (1)

=
∑

Fc Ec P(c) N(c), (2)

c ∈ C

here R is the total risk, a scalar value; C is the set of all contours
or all threats and wind conditions; Fc is the threat factor for
ontour c; Ec is the exposure level factor for contour c; P(c) is

w
t
m

ig. 3. Contour detection example. Population is not counted in inner polygon
ings. Grid cells detect the contour if the reference point lies within the contour’s
uter polygon ring.

he probability of occurrence for the wind condition associated
ith c; N(c) is the count of population within contour c
For an example, refer to Fig. 2, a Google Earth display show-

ng contours for 30-min AEGL levels 1–3. Note the contouring
hown is from a dosage field for a single dispersion computation,
here the wind direction was chosen fortuitously to disperse the
aterial towards a nearby population center. The legend shows

he population counts for the respective contours. Note contour
opulation counts do not include areas in inner polygon rings,
s illustrated in Fig. 3.

Assume the probability of the wind condition for the asso-
iated dispersion computation is 0.1, and the threat factor is
.0. Since the threat and wind condition are the same for all
hree contours, P(c) = 0.1 and Fc = 1.0 for each of them. If we
ssign exposure level factors (Ec) of 1.0, 2.5, and 4.0 for AEGL-
-30 min, AEGL-2-30 min, and AEGL-3-30 min, respectively,
he risk value for each contour calculated according to Eq. (2)
s:

R(AEGL − 1–30 min) = 1.0 × 1.0 × 0.1 × 31839=3183.9

R(AEGL − 2–30 min) = 1.0 × 2.5 × 0.1 × 3575 = 893.75

R(AEGL − 3–30 min) = 1.0 × 4.0 × 0.1 × 39 = 15.6

.2. Accounted-for fisk

We wish to detect as much of the total risk as possible by
lacing sensors in a placement grid. We express the objective
unction in terms of the placement grid as follows.

A contour is considered to be detected or covered by a sensor
n a placement grid cell if the reference point of the cell lies
ithin the outer ring of one of the contour’s polygons. We intro-
uce a binary detection function D(c, gi) where c is a contour,
nd gi is a particular grid cell:

(c, gi) =
{

0 if rgi ∧ p = ∅ ∀p ∈ Pc
(3)
1 otherwise

here Pc is the set of polygons associated with contour c; rgi is
he reference point for grid cell gi and; x ∧ p tests for contain-
ent of point x in the outer rings of polygon p.
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The second input is the placement grid, or more succinctly
the cells comprising the grid, with a reference point specified for
R.W. Lee, J.J. Kulesz / Journal of H

Detection is illustrated in Fig. 3. In the figure, there is a grid
f cells in five columns and four rows. Cells with center points
ot within the contour outer polygon ring are shaded, indicating
hey do not detect or cover the contour.

The risk accounted for by placing one sensor in grid cell gi

an be expressed in terms of contour risk values from Eq. (2):

(gi) =
∑
c ∈ C

D(c, gi) R(c) (4)

(gi) =
∑
c ∈ C

D(c, gi) Fc Ec P(c) N(c) (5)

iven n sensors, we want to place them in a grid cell con-
guration G = {g1, . . . , gn} that would result in maximum
ccounted-for risk.

We make no attempt to solve the global optimization problem.
ather, we solve a sequence of weaker optimization problems
y finding the optimal grid cell for sequential placement of the
ensors in the grid, one at a time. Thus, on the first iteration we
nd

axkS(gk) (6)

This fixes the location of the first sensor at g̃1. On the second
teration g̃1 is already selected by the previous step, and we solve

axkS(g̃1; gk), g2 /= g̃1 (7)

Generally, for iteration k the cells g1, . . . , gk−1 have been
elected in the previous k − 1 iterations, and thus we find

axkS(g̃1; . . . ; g̃k−1; gk), gk /= g̃1 . . . g̃k−1 (8)

.3. Marginal and cumulative utility

A byproduct of calculating accounted-for risk in a cell is a
imple calculation of the marginal utility of placing a sensor in
hat cell, the ratio of the accounted-for risk to the total risk. We
epresent the marginal utility for grid cell gi as Ugi :

gi = S(gi)

R
(9)

Upon successive iterations in the placement algorithm
escribed in Section 5, the sum of the S(gi) values for chosen
rid cells yields the cumulative accounted-for risk. The quo-
ient of the cumulative accounted-for risk and total risk yields
nother useful fraction, the cumulative utility. Note this value is
onotonically increasing.

. Placement algorithm

Once the inputs described in Section 3 have been gathered
nd computed, Eq. (5) can be applied to compute the accounted-

or risk for each grid cell and then to determine the optimal cell
n which to place a sensor. We execute a dynamic programming
lgorithm to choose sensor locations in sequence, terminating
hen one or more criteria are met.

e
R
l
b
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.1. Sensor placement iterations

Each iteration of the algorithm applies the equations to choose
he optimal location (i.e., grid cell) for the next sensor. Loca-
ions for any already-placed sensors were determined in prior
terations and are not changed.

The state associated with each iteration consists of the set
f contours that have yet to be accounted for by a previous grid
ell selection. On the first iteration no sensor locations have been
hosen yet, and the state consists of all contours for all threats
nd wind conditions, represented by C in Eq. (5).

An iteration ends with the determination of which contours
o include in the contour set for the next iteration. Recalling the
etection function of Eq. (3), the contour set for iteration k + 1
s determined as follows:

k+1 = {c ∈ Ck : D(c, gk) = 0,

gk is the selected grid cell for iteration k} (10)

.2. Termination criteria

There are three criteria for terminating the placement algo-
ithm. They can be applied independently or in combination.

.2.1. Fixed number of sensors
There are a fixed number of sensors available to deploy, thus

ictating or limiting the number of algorithm iterations.

.2.2. Minimum cumulative utility
The goal is to achieve a specified cumulative utility described

n Section 4.3. Sensors are placed until the minimum is reached.
his criterion should be used in combination with the following
ne, and the specified value must be in the range (0,1).

.2.3. Marginal utility threshold
Sensors are placed until the marginal utility for the most

ecent sensor falls below a specified value. The basis for the
hreshold could be a minimum benefit needed to justify the cost
f an additional sensor. This threshold value also must be in the
ange (0,1).

.3. Algorithm steps

The placement algorithm operates on two sets of input data
nd a parameter. One input is the set of contours, where each
ontour is a geographic polygon and associated risk value cal-
ulated as per Eq. (2). Refer to Section 3.2 for a description of
ow contours are derived.
ach cell. The parameter is the termination criterion or criteria.
efer to Algorithm 1. The bulk of the algorithm is the while-

oop which tests whether or not the termination criteria have
een met.
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Step 7 Run iterative placement algorithm. After comple-
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lgorithm 1. Place sensors

The first step in the loop, line 7, is the computation of the
ccounted-for risk for each unused cell in the placement grid, as
er Eq. (5). Applying Eq. (8), the cell with the highest accounted-
or risk is selected as optimal for situations where sensors may
e located in any grid cell. Alternatively, there may be a finite
nd discrete set of possible sensor locations due to availabil-
ty of power, line of sight for wireless networks, and similar
onstraints. In this case grid cells should be sorted by decreas-
ng accounted-for risk value to identify the next grid cell to be
elected for sensor placement.

Lines 9–12 add the optimal cell to the list of cells used to place
ensors, mark the cell as used, update the cumulative accounted-
or risk, and advance the iteration count. Note the accounted-for
isk in the selected cell is used to determine the marginal utility,
s per Eq. (9).

Line 16 is the application of Equation 10 to determine the
ontours which have yet to be accounted-for. Depending on how
he exposure contours are stored, it might be easier or more
fficient to maintain the list of contours to exclude, rather than
nclude, in subsequent processing. That is, line 16 could compute
¯ , the set of accounted-for contours.

. Methodology summary

The methodology is composed of two phases: preparation
f inputs for the placement algorithm; and execution of the
lgorithm. It is applied with the following sequence of steps.

tep 1 Define threats and assign threat factors. As described
n Section 3.1, each threat must be defined as one or more
eleases of hazardous materials. In addition, a weighting fac-
or may be assigned to each defined threat. If all threats are
onsidered equally likely, each threat’s factor should be 1.0.

tep 2 Define or compute a wind rose. The next step is to
stablish the wind rose to use for dispersion calculations and

s the P(c) term in Eq. (5). Although the wind rose may be
pecified manually or derived through any means for use in the
lacement methodology, the idea is to compute the rose from
istorical data, such as SAMSON data (refer to Section 3.3).

t
A
l
t

ous Materials 158 (2008) 417–429

tep 3 Compute threat dispersions and generate contours.
he chosen atmospheric transport and dispersion model must be

un for each threat at each (direction, speed) pair in the wind rose.
his results in a dosage field for each threat and wind condition

refer to Section 3.5).
Each dosage field is then contoured by dosage values cor-

esponding to the qualitative exposure levels defined for the
pecific material released in the threat definition. (Note expo-
ure level contour values may be obtained from HPAC’s material
atabase.) Contours are represented as geographic polygons,
here each polygon consists of an outer ring and zero or more

nner rings.

tep 4 Assign exposure level factors. A quantitative weight-
ng factor must be assigned for each unique exposure level
ssociated with a contour resulting from Step 3. Refer to Section
.2 for a discussion of exposure factors.

tep 5 Compute risk values. Using a suitable population dis-
ribution, population contained within each exposure contour is
alculated, accounting for any inner polygon rings. Each con-
our is associated with a threat, wind condition, and exposure
evel. The threat factor, wind condition probability, exposure
evel factor, and population count are used to calculate the risk
ssociated with each contour, R(c) in Eq. (2). The sum over all
(c) values yields the total risk, R.

tep 6 Specify the placement grid. Section 3.6 describes the
lacement grid and how it may be defined. For a simple rectilin-
ar grid, it suffices to specify the corners of the grid’s geographic
ion of the first six steps, all the inputs necessary to execute
lgorithm 1 are available. Termination criteria must be estab-

ished as described in Section 5.2, and the algorithm is executed
o determine optimal sensor locations.
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Table 1
Summary of placement results at the Port of Memphis

Iteration Highest cell value Selected sensor cell Accounted-for risk Marginal utility (%) Cumulative utility (%)

1 132300 11 124600 49.43 49.43
2 86420 21 74300 29.48 78.91
3 3280
4 349
5 240
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. Results

The approach described here has been applied to the place-
ent of chemical sensors at the Port of Memphis in an attempt

o mitigate risks associated with a set of threat scenarios defined
n prior analysis of the Port’s vulnerabilities. The threats were
istilled to nine representative scenarios in three different loca-
ions and involving a specific set of materials. Sensor locations
ere constrained to roughly 30 locations around the Port area
ue to availability of power and other considerations. Results of
pplying the methodology are presented in tabular and graphic
orm.

Table 1 is a summary of the results of applying the methodol-
gy at the Port of Memphis. Each successive iteration represents
computation of the optimal cell location against all contours
ot accounted for by a previously selected cell. The total risk
rom all threats is 252,060.

A visual representation of the placement process is given in a
uccession of images showing the grid overlaid on the Port area.
rid cells are colored by accounted-for risk. The colormap is a
24-element spectrum starting with blue for low accounted-for
isk values and moving to cyan, green, yellow, orange, and then
ed for the highest values.

Fig. 4 depicts the grid for the first iteration, when all
ontours are included in the placement computation. Possi-
le sensor locations, based on site constraints, are indicated
ith circles. Note Table 1 shows the first-iteration maximum

ell accounted-for risk value is 132,300, but that cell does not
ontain one of the possible sensor locations. Of the possible
ocations, the cell containing Site 11 has the highest value,
24,600, and thus is the optimal available location for the first
ensor.

Fig. 5 depicts the grid for the second iteration. All contours
ccounted for by the cell containing Site 11 are ignored in this
teration. The figure illustrates the remaining areas of the grid

ontaining high values. Again, the cell with the highest value
oes not contain a possible location site, but Site 21’s cell (unla-
eled, adjacent to Site 22 in the image) has the highest value
mong the possible locations.

a
q
b
a

able 2
hillon et al. approach results for the Port of Memphis

teration Selected sensor cell Miss probability A

19 0.002137 9
18 0.002146 1
21 0.002187 2
20 0.002191
23 0.002266
0 13.01 91.92
2 1.39 93.31
0 0.95 94.26

Fig. 6 depicts the grid for the third iteration. All contours
ccounted for by the cells containing Sites 11 and 21 are ignored.
ll that remains is the relatively lower valued area in the western

nd of the Port area. The cell with the highest value among those
ontaining possible sensor locations contains Site 01.

Fig. 7 depicts the grid for the fourth iteration. At the resolution
f the colormap used for the grid depiction, no significant risk
alue remains to be accounted for or detected. However, Table 1
hows Site 25 as leading possible locations in accounting for
hat risk remains. Note the marginal utility has fallen below

wo percent in this iteration, confirming what one can deduce
rom the visual representation in the image.

After completion of five placement iterations, 94.26% of the
otal risk for all nine threats has been accounted for by the five
ites. Based on criteria established for the Port, iteration five is
he last.

. Comparison with other approaches

As noted above, there are many approaches and algorithms
or optimal placement of sensors. Iterative methods comprise
ne class of such algorithms and is the class into which the
ethodology and algorithm proposed here falls. Thus, we wish

o compare our risk-based approach to other iterative methods.
A sensor placement method representative of iterative

pproaches is that described by Dhillon et al. [9]. Their method
s based on geometry and/or geography without considering
uman effects. It places sensors using a probability of detec-
ion matrix computed as an exponential function of the distance
rom the grid point to the threat for each proposed placement
rid point and each threat location. The Dhillon et al. approach
ffers many advantages, such as quick calculation and the ability
o compute a solution independent of a specific placement grid.

We compare the two approaches by applying the Dhillon et

l. method to the problem at the Port of Memphis and using the
uantitative accounted-for risk value as defined in Eq. (5) as the
asis for comparison. Then, we illustrate the importance of the
dditional factors considered by our method.

ccounted-for risk Marginal utility Cumulative utility

7390 38.6376 38.6376
8110 7.1848 45.8224
3650 9.3827 55.2051
2016 0.7998 56.0049
181 0.0718 56.0767
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Fig. 4. Placement grid after the first iteration. Grid cells are colored by accounted-for risk in a spectrum from blue (lowest) to cyan, green, yellow, orange, and red
(highest). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

Fig. 5. Placement grid after the second iteration. Grid cells are colored by accounted-for risk in a spectrum from blue (lowest) to cyan, green, yellow, orange, and
red (highest). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)
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Fig. 6. Placement grid after the third iteration. Grid cells are colored by accounted-for risk in a spectrum from blue (lowest) to cyan, green, yellow, orange, and red
(highest). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

Fig. 7. Placement grid after the fourth iteration. Grid cells are colored by accounted-for risk in a spectrum from blue (lowest) to cyan, green, yellow, orange, and red
(highest). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)
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Fig. 8. Scenario in which the algorithms (a) choose the same location, (b) differ
due to winds, (c) differ due to population, and (d) differ due to threats.
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.1. Port of Memphis comparison

The Dhillon et al. algorithm applied to the same Port of Mem-
his problem as described in Section 7, with the available sensor
ocations illustrated in Fig. 4, yields the results shown in Table 2.

As one would expect, the accounted-for risk values for sensor
ocations chosen solely on the basis of distance from threats
re much lower. Miss probabilities calculated according to the
hillon et al. algorithm are very small, meaning sensors at the

elected locations have a very high probability of detecting a
hreat based on the algorithm’s exponential distance objective
unction. However, sensors at the five locations resulting from
he Dhillon et al. approach account for only 56% of the total risk
osed by the defined threats, where total risk is defined by Eq.
2) and accounted-for risk by Eq. (5). As shown in Table 1, the
isk-based methodology accounts for 94% of the total risk.

Further, the 49% of total risk accounted for by the first risk-
ased location nearly equals what five sensors achieve in the
istance-based algorithm, and placing a second sensor in the
isk-based approach exceeds the accounted-for risk achieved
ith five sensors in the distance-based algorithm.

.2. Accounting for the placement factors

The three primary factors accounted for in the proposed risk-
ased methodology and which are missing in other iterative
pproaches are winds, population distribution, and the relative
oxicity of different materials or agents representing threats. We
an construct a scenario in which the two methods compared
bove yield equivalent results and then vary the three factors to
emonstrate the advantage of the risk-based approach.

Suppose there are two threats and one sensor to be placed.
he threats are identical and have the same latitude coordinate
alue. There are two wind conditions, one with direction 90◦
nd the other direction 270◦ and both with the same wind speed.
opulation is distributed uniformly between the longitudinal
oundaries formed by the threat locations. These baseline con-
itions are depicted in Fig. 8(a). Note the effects for threat 1 and
inds at 90◦ lie west of the population grid and thus have no
opulation effects. Similarly, effects for threat 2 with winds at
70◦ lie east of the grid and have no effect.

In this contrived situation, both algorithms will place the sin-
le sensor on the same latitude as the threat locations and at a
ongitude exactly between them. Moreover, the Dhillon algo-
ithm will always place the sensor at the mid-point location
egardless of changes in the winds, population, or the release(s)
ssociated with the threats.

.2.1. Changing the winds
Fig. 8(b) depicts the situation where the identical threats in

he two locations are subjected to equally likely winds at 135◦
nd 225◦. The dose fields for threat 1 at 135◦ and threat 2 at 225◦
ie outside the population area and are thus not shown. Effects

ontours for threat 1 with 225◦ winds and threat 2 with 135◦
inds are represented (unrealistically) as ovals. The risk-based

pproach will place the sensor in the area where the most risk is
ccounted for, in this case at the intersection of the two effects



azard

c
a

8

a
h
f
i
a

8

b
l
g
r
l

r
t
a
p
a

a
e
f
b
c
t
p

9

t
a
f
s
c
t
t
r
w
f
s

t
f
c
s
r
w

A

u
o
l
t
u
p
U

R

[

[

[

[

[

[

[

[

R.W. Lee, J.J. Kulesz / Journal of H

ontours. Note the center-line location chosen by the Dhillon et
l. approach accounts for none of the effects on population.

.2.2. Changing the population distribution
Fig. 8(c) represents the situation where the winds are at 90◦

nd 270◦, but the population lies completely in the western or left
alf of the grid. Assuming an equal geographic area of coverage
or the effects plumes from the respective threat locations, as
llustrated by the oval shape, the risk-based approach will choose
location in the center of the western half of the grid.

.2.3. Changing the threats
Finally, Fig. 8(d) illustrates the situation differing from the

aseline only in the toxicity of the threats at the respective
ocations. Threat 1 is twice as toxic as threat 2. Assuming the
eographic reach of the respective effect plumes are the same,
epresented by the ovals, the risk-based approach will choose a
ocation in the western half of the grid.

Although these comparisons vary one factor at a time, in
eality all the factors will vary together in complex combina-
ions. The proposed risk-based sensor placement methodology
ccounts for these complex combinations by quantifying the risk
osed by each threat and determining where to place sensors to
ccount for the most risk.

In most circumstances a placement of sensors that does not
ccount for these factors will result in an inadequate reckoning of
xposure risks, as demonstrated in the comparisons above. These
actors comprise the objective function for the proposed risk-
ased sensor placement methodology. Each sensor’s location is
hosen from a local optimization of the objective function, and
he result of this process is a quantified assessment of population
rotection against risks.

. Summary

The sensor placement methodology proposed here attempts
o solve the problem of locating sensors to protect population
gainst a set of known and/or postulated threats. An objective
unction based on population exposure and effects is used to
olve a series of local optimizations. Historical meteorologi-
al data are used to characterize wind speed and direction and
hus drive atmospheric transport and dispersion modeling of the
hreats, the results of which are used to calculate population at
isk in various exposure levels. Sensor locations are determined
ith a dynamic programming algorithm whereby risk accounted

or by sensors placed in prior iterations is not considered in
ubsequent iterations.

Moreover, the proposed methodology provides a quantifica-
ion of the marginal utility of each additional sensor. This is the
raction of the total risk accounted for by the sensor. Thus, the

riteria for halting the iterative process can be the number of
ensors available, a threshold marginal utility value for the most
ecent sensor, and/or a minimum cumulative utility achieved
ith all sensors.
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